
Vol. 69 (1999), No. 3, pp. 217-238 Journal of Economics 
Zeitschrift for National6konomie 

�9 Springer-Verlag 1999 - Printed in Austria 

Infinite-Horizon Competitive Programs Are Optimal 

Swapan Dasgupta and Tapan Mitra 

Received April 9, 1998; revised version received September 28, 1998 

For infinite-horizon optimal-growth problems the standard result in the literature says 
that a program is optimal if and only if associated with it is a sequence of present-value 
prices at which the program satisfies (i) a set of myopic "competitive conditions," and 
(ii) an asymptotic "transversality condition." The principal result of this paper points out 
the interesting and surprising fact that at least for a class of multisector models where 
the production side is described by a simple linear model, and there are some limiting 
primary factors, the competitive conditions alone characterize an optimal program. 

Keywords: optimal programs, competitive conditions, transversality condition, inter- 
temporal decentralization. 

JEL classification: C61, D90, O41. 

1 Introduction 

Ever since Malinvaud's (1953) classic paper it is recognized that resource- 
allocation problems over time, with no terminal date, are different from 

finite-horizon or static allocation problems in an essential respect. In the 
latter, an allocation of resources is optimal if  and only if there is an asso- 
ciated set of shadow prices (dual variables) at which the quantities in the 
allocation are also solutions to individual optimization problems (profit 

or utility maximization under suitable constraints) treating these prices as 
(parametric) competitive market prices. In this sense the plan can be decen- 
tralized or regarded as being "competitive." This is, however, only partly 
the case in the former. 

In this paper we will address infinite-horizon optimal-growth problems 
of the Ramsey type in multisector production models (see McKenzie, 1986, 
for a comprehensive survey). In the context of  such problems, the standard 



218 S. Dasgupta and T. Mitra 

result in the literature says that a program is optimal (maximizing a dis- 
counted or undiscounted sum of utilities) if and only if associated with it is 
a sequence of present-value prices at which the program satisfies two types 
of conditions: (1) a set of "competitive conditions" which are essentially 
intertemporal profit and utility maximization (see Gale and Sutherland, 
1968) period by period; and (2) some appropriate kind of "transversality 
condition," namely, the present value of capital stock asymptotically con- 
verges to zero (discounted case) or is bounded (undiscounted case). The 
former condition is thought of as capturing the notion of finite-horizon 
optimality; that is, optimality amongst the paths with a terminal date and 
prescribed initial and terminal stocks (see Dorfman et al., 1958). It is the lat- 
ter which is supposed to capture the infinite-horizon nature of the problem, 
signaling capital overaccumulation along programs which are competitive 
or finite-horizon optimal but fail to satisfy the asymptotic condition. While 
the former corresponds to individual (or myopic) optimization in compet- 
itive markets and is analogous to the characterization in static problems, 
the latter does not seem to correspond to any myopic-behavior rule for 
an individual decision maker and in that sense is not decentralizable (see 
Koopmans, 1957; Majumdar, 1988). 

The principal result of this paper points out the interesting and surprising 
fact that at least in a class of such multisector optimal-growth models where 
the production side is described by a simple linear model, where there is 
no joint production, there is one process for each good, and there are some 
limiting primary factors, the competitive conditions alone characterize an 
optimal program. 1 They capture both the finite- and infinite-horizon as- 
pects of the problem. Finite-horizon optimality for every finite horizon 
also guarantees optimality in the infinite-horizon problem. This is because 
the competitive conditions for an infinite program can be shown to imply 
that the transversality condition is also automatically satisfied. 

This is especially of interest in the context of decentralization and plan- 
ning, and recent literature providing characterizations of infinite-horizon 
optimal paths in which the transversality condition (an asymptotic con- 
dition) is replaced by an equivalent finite-horizon condition which may 
be verified period by period by myopic agents. More precisely, in models 

1 Actually, this result holds for a wider class of multisector models, as is clear from 
the more extensive analysis carried out in Dasgupta and Mitra (1991). In particular, for 
yon Neumann models which allow for joint production, the result can be established 
under a stronger form of the productivity assumption than Assumption 3 used in this 
paper. 
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where there is a stationary optimal program it can be shown that a program 
is optimal if and only if it satisfies the competitive condition (1), together 
with an additional myopic condition which roughly says that (3), the de- 
viation of prices and quantities along the competitive program, from those 
along the stationary optimal program, are of opposite signs in each period 
(see Brock and Majumdar, 1988; Dasgupta and Mitra, 1988). In the class 
of problems dealt with in the present paper, only the myopic competitive 
conditions turn out to be essential for optimality. No other auxiliary con- 
ditions, such as (3), which are difficult to interpret from the standpoint of 
decentralization and individual incentive compatibility, are needed. As a 
consequence, any additional information required in some of these char- 
acterizations, like that of a stationary optimal solution and its supporting 
prices, become unnecessary as well. 

In brief then, this paper deals with price characterization of optimal 
paths in an infinite-horizon multisector optimal-growth model of the Ram- 
sey type where the production side of the model is described by a Leontief 
model. As such, this is a special case of general versions of such a dynam- 
ic-optimization problem dealt with in the literature (see, e.g., Peleg, 1970, 
1974; Weitzman, 1973; McKenzie, 1986) and the general characterization 
results, well-known in the literature, of course apply; in particular, with 
convex structure, it is a necessary condition for optimality of a given pro- 
gram that it satisfies the competitive conditions. In this paper, therefore, we 
focus only on conditions which are sufficient to ensure that a program is 
optimal. We may succinctly describe the two kinds of existing sufficiency 
results as follows: in one kind, a typical statement would be that a competi- 
tive program is optimal if it satisfies an asymptotic transversality condition, 
such as (2); in the other kind, a typical statement would read: a competitive 
program is optimal if it satisfies a period-by-period condition, such as (3). 
The novelty of the present paper lies in showing that within the context of 
a multisector production model, such as the one dealt with here, a much 
sharper statement is possible, which entirely dispenses with any "transver- 
sality condition" or an auxiliary condition, such as (3). A very simple 
statement can be established, namely, a competitive program is optimal. 

Following preliminary definitions and results in Sect. 2, the statements 
of our main theorems, along with supporting auxiliary propositions, are 
collected in Sect. 3. We supplement formal statements with informal dis- 
cussions to provide the intuitive reasoning behind the results. For the in- 
terested readers, complete formal proofs are provided in the appendix. 
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2 Preliminaries 

2.1 The Model 

The model is described by a triplet (S2, u, 6), where fa, a subset of  R~ x R~_, 
is the technology set, u" R~_ --+ R is the period welfare function, and 8 is 

the discount factor. Points in ~ are written as an ordered pair (x, y), where 
x denotes the initial stock of inputs and y denotes the final output which 

can be produced with inputs x. We shall make the following assumptions 
on (~2, u, 8). 

Assumption i:  There is an n x n real matrix A = [aij], i = 1 . . . . .  n, 
j = 1, . . . ,  n and a vector b = (bl, . . . ,  bn) in R n such that for any (x, y) 
in R n x R n, (x, y) c ~2 iff x > Ay, x > O, y > O, and by < 1.2 

Assumption 2: aij >_ 0 for all i, j = 1 . . . . .  n; for each j = 1 . . . . .  n, 
there is some i = 1 . . . . .  n such that aij > 0 ;  b >> 0. 

Assumption 3: A is productive; that is, there is 2) >> 0 such that ~ >> A~ 
and b~3 < 1. 

Assumption 4: u : R~_ --+ R is continuous. 

Assumption 5 : 0  < 8 < 1. 

Here, aij and bj are, respectively, the amounts of the i-th good and labor 
which are required to produce one unit of output of the j - th  good. Assump- 

tion 2 simply says that each production process requires a positive amount 

of  the primary factor, as well as a positive amount of  some produced factor. 
Assumption 3 essentially excludes the economically uninteresting case of  
a production system which is unable to sustain some positive consump- 
tion levels for all of the desired goods. A different interpretation of this 
condition is that it ensures that the series of the "direct and indirect" input 
requirements, }--~,~o A t, adds up to a finite sum. This is well-known (see 
Dorfman et al., 1958; Gale, 1960) and we state it formally as a remark, for 
future reference. 

2 F o r x ,  y i n R  n , x  > y m e a n s x i  > Yi f o r i  = 1 . . . . .  n ; x  > y m e a n s x  > y 
and  x r y; x >> y m e a n s  x i > Yi for i -= 1 . . . . .  n. For x in R n, the  s u m  n o r m  of  x 
(denoted by I[x [I) is defined by I[x [I = ~ i = l n  [xil" 
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Remark 1." I f  A is productive and A > 0 then A t -+ 0 as t --> oo, and 

( I  - A) - ]  = y ~ c  A t, where, by convention, A ~ is the identity matrix I .  

It is clear that there is a number )~ satisfying 0 < )~ < 1 and A~ << )@, 

where ~ is the vector whose existence is asserted in Assumption 3. From 
now on we fix the number)~ and the vector ~. In what follows, we normalize 

u ( 0 )  = 0. 

2.2 Programs 

A program from f in R~_ is a sequence (x(t), y(t) ,  c(t)} such that y(0) 

= ~, and (x(t) ,  y( t  + 1)) 6 S2, c(t) -= y(t)  - x( t )  > 0 for all t > 0. 3 

Because of the presence of a limitational primary factor, labor programs 

from f are uniformly norm-bounded by a number which depends only on 

the initial stock ~.4 More precisely, there is a number fi = max{ll~lf, 1/ 

[mini{bi}]}, such that if (x(t),  y(t) ,  c(t)) is a program from ~ in R~_ then 
lly(t)[J < /3  for all t > 0 and, therefore, []x(t)J[ < r ,  Jfc(t)[I < fi, as well, 
for t > 0; consequently, the utility in each period, u(c(t)),  can at most be 

maxllcll< ~ u(c), which we shall denote by B. 
We now note a useful property of  programs, which exploits the specific 

structure of the simple linear model of  production. Consider the consump- 
tion in period t, c(t). To produce this we need inputs in the previous period 

equal to Ac(t) .  However, these inputs themselves have to be produced one 
period earlier, at (t - 1), and require inputs equal to A[Ac(t)] = A2c(t) in 

period (t - 2). The pattern is clear; if  we go back to some earlier period T 
then we must have stocks at hand equal to At-Tc( t ) ,  which are solely de- 

voted to generating the intermediate inputs in the intervening periods from 
T + 1 to t - 1, in order to be able to produce the final output c(t) in period t. 

This is true of the consumption in each and every period t subsequent to T. 
The stocks at hand in period T, y (T) ,  must be large enough to provide the 

consumption in period T and the sum total of the inputs required to pro- 
duce the future stream of consumption; that is, y (T )  > ~-~=v A r - t c ( t )  . 
In the argument above, we allowed for the possibility that there may be 

3 The expression "a program from ~" actually means "a program starting from 
the initial stock f." This being understood and standard in the literature, the shorter 
expression is used for convenience. 

4 This boundedness result is true for more general models; see, for example, Das- 
gupta and Mitra (1988). However, in the present paper, one can provide explicit bounds 
for output in terms of the parameters defining the technology set. 
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waste in the productive process: the inputs used may be larger than the 
minimum necessary to produce the output. If, however, production within 
each period takes place in an efficient manner then the stocks at hand at 
time T are just enough to generate the future stream of consumption, so 
that y(T)  = ~ = Z  At -Zc( t )  �9 This convenient property is quite crucial to 
our analysis, and we state it formally below. 

Lemma 1: If (x (t), y (t), c(t)) is a program from ~ in R~_, then for each T 

> 0 ,  

A t - r  c(t) < y ( T ) .  
t = T  

(la) 

Furthermore, if Ay(t  + 1) = x(t) for t > 0, then 

oo 

At -T  c(t) = y(T)  . 
t=T  

(lb) 

2.3 Optimal and Competitive Programs 

An optimal program from ~ in R~_ is a program (x*(t), y*(t), c*(t)) from 
such that 

r 
lim sup ~ ~t[u(c(t)) -- u(c*(t))] < 0 

T- +c<) t = l  

for every program (x(t), y(t), c(t)) from ~. 
In the discounted case (0 < ~ < 1), it is clear that for every program 

(x(t), y(t),  c(t)) from ~ in R~_, ~ 6tu(c(t)) is absolutely convergent. 
Then, the criterion of optimality of (x*(t), y*(t), c*(t)) given above is 
equivalent to 

oo o~ 

<_ 

0 0 

for every program (x(t), y(t), c(t)) from ~. 
In the undiscounted case (6 = 1), the utility sums are not necessarily 

convergent, and the criterion of optimality is in terms of the familiar "over- 
taking criterion" (see Gale, 1967). 

A competitive program from ~ in R~_ is a sequence (x(t), y(t), c(t), 
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p(t)) such that (x(t), y(t),  c(t)) is a program from y, p(t)  is in R~ for t 
> O, and the inequalities below hold: 

6tu(c(t)) - p(t)c(t)  > 6tu(c) - p( t )c  for all c > 0, t > 0 ,  (2) 

p(t  + 1)y(t + 1) - p(t)x( t )  > p(t  4- 1)y - p( t )x  

for all (x, y) ~ f2, t > 0 .  (3) 

Given a competitive program (x(t), y(t),  c(t), p(t)) from 2?, we inter- 
pret p(t)  as the present-value price vector at date t, reflecting the shadow 
valuation of the n producible goods in the economy at that date. 

We associate with a competitive program (x(t), y(t), c(t), p(t)) from ~, 
a sequence (w(t)), where w(t) is in R+ for t > 0, and w(t) is defined by: 

w ( t ) = p ( t + l ) y ( t + l ) - p ( t ) x ( t )  for t  > 0 .  (4) 

We interpret w (t) as the present-value wage at date t, reflecting the shadow 
valuation of labor (primary factor) at that date. 

The interpretations of the inequalities defining a competitive program 
are standard. The first inequality implies utility maximization over con- 
sumption bundles which are possible to purchase at the prices p(t)  and 
with the same expenditure as the bundle consumed, c(t). 

The second inequality implies that present-value profit (present-value 
revenue minus input cost) is maximized over the set of feasible produc- 
tion processes in each period. Since we are dealing with a linear-activities 
model, at the prices p(t),  w(t), each activity at best breaks even (value of 
output from the activity does not exceed the cost of production, including, 
within the cost of production, the cost of produced inputs as well as that 
of the primary factor, labor). Activities which are used at a positive level 
do break even (show zero profit) while activities which are not in use may 
show a loss. Further, factors of production, both produced as well as pri- 
mary factors, which are in surplus, have zero value. All this is formally 
stated in the following result: the proof is clear from the literature on du- 
ality theory of price supports for efficient allocation of resources in static 
models, and is therefore omitted. 

Lemma 2: If (x(t), y(t), p(t),  c(t)) is a competitive program from 27 in 
R~_, with an associated sequence (w(t)) satisfying (4), then 

i. 0 = [ p ( t + l ) - p ( t ) A - w ( t ) b ] y ( t + l )  > [ p ( t + l ) - p ( t ) a - w ( t ) b ] y  
for all t >_ 0, and for all y in R~_; 
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ii. i f y ( t  + 1) >> 0 for some t > 0, then [p(t + 1) - p ( t ) A  - w(t)b] = 0 
for that t; 

iii. if p( t )  >> 0 for some t > 0, thenx( t )  = Ay( t  + 1)for  that t; 
iv. if w(t)  > 0 for some t > 0, then by(t  + 1) = 1 for that t. 

3 Optimali ty of Competitive Programs 

3.1 Competitive Valuation of  Labor 

In this section we establish a property regarding the long-run valuation of 
labor (primary factor) along a competitive program. This property consti- 
tutes the principal technical result of the paper, enabling us to establish the 
optimality of competitive programs (in the next two sections). However, it 
is clearly also of independent interest. 

Given a competitive program (x(t) ,  y( t ) ,  c(t),  p( t ) )  from ~ in R~, with 
associated (present value of wage) sequence (w (t)), we define its current- 
value price sequence (q (t)) and its current-value wage sequence (v (t)) by 
q(t)  = [p(t) /3t] ,  v(t)  = [w( t ) /6  t] for t > 0. 

A basic property of competitive programs is that the current-value wage 
sequence is uniformly bounded above. To establish this property we will 
use the following additional assumption on the utility function. 

Assumption 6: (i) If u(c) > 0 and c I > c, then u(c') > u(c); (ii) u ( v e ) / v  
--+ oo as v --+ 0; (iii) if u(c) > 0 and ci = 0 for some i in {1 . . . . .  n}, then 
[u(c -[- ee i) -- u(c)] /e  -~ oo as e -~ 0 for that i, where e i is the i-th unit 
vector in R n. 

Assumption 6 states restrictions on the utility function which are fairly 
standard. Part i simply says that the produced goods are desirable: utility 
is increasing in each good. This property is assumed to hold when utility 
is positive (recall that the utility of the zero-consumption bundle has been 
normalized to zero) so as to permit the inclusion of the standard example 
of a Cobb-Douglas function (where utility is zero along the boundary of 
the nonnegative orthant). 

Parts ii and iii of Assumption 6 have the same function as the well-known 
Inada conditions. They essentially say that the rate of increase of utility is 
large when consumption levels are small. They, therefore, ensure that utility 
as well as consumption levels of all goods are positive along competitive 
programs and allow us to concentrate only on interior programs, where 
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all relevant variables are positive, ignoring programs which may reach 
the boundary. Dealing with the latter possibility increases the technical 
complexities without shedding much light on the general nature of the 
arguments. 

Under Assumption 6, along a competitive program, consumption, out- 
put, and prices are positive at each date. Since all activities are operated at 
positive levels, they all break even. Since all goods prices are positive (they 
are scarce), there is no wastage of produced inputs. These observations are 
stated formally, for future reference, in the following lemma. 

Lemma 3: If (x(t), y(t),  c(t), p(t)} is a competitive program from ~ in 
R~_, with an associated sequence (w(t)) satisfying (4), then 

i. (c(t), y(t), p(t)) >> 0 for t _> 0; 
ii. p(t + 1) = p(t)A + w(t)b for t > 0; 

iii. x(t) = Ay(t + 1) for t > 0. 

We may now state the main result of this section. 

Proposition 1." Let (x(t), y(t),  c(t), p(t)) be a competitive program from 
in R~. Then, 

lim sup v(t) < ec .  (5) 
t - - + ~  

We provide a heuristic explanation of this technical result. In what fol- 
lows we deal only with current prices which, as the competitive conditions 
show, are the marginal utilities of the goods. Write r as the interest rate, 
which is implicit in the discount factor 6; that is, S = 1/(1 + r). The current 
price of the j- th good, in period t + 1, is the outlay on the inputs (both 
intermediate inputs and labor) in period t plus the interest on this outlay. 

r n That is, qj (t + 1) = (1 + )[y~i=~ aij qi (t) + v (t)bi]; or, in vector notation, 
q(t + 1) = (1/6)[q(t)A + v(t)b]. 

If, at some period T, the current wage v(T) is "very large," then the 
prices of all goods in the next period, T + 1, will be large, because of the 
large labor cost of production. As a result, the cost of (produced) inputs of 
the output in period T + 2, i.e., q (T + 1)A will be large and, consequently, 
prices in the next period, q(T + 2) will also be large. Clearly, this line of 
reasoning can be carried forward for a long period of time to conclude that 
a high level of current wage at time T will give rise to high levels of prices 
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of goods persisting for a long period of time N; the higher the initial wage 
v(T), the longer the period N and the higher the prices prevailing during 
this period. Along a competitive program, the current price of a good equals 
its marginal utility; thus, over the period N, marginal utilities must be very 
large, that is to say, consumption levels chosen must be very small. 

Observe that, since the series of direct and indirect input requirements, 
~ T + I  At-(T+l)c(t), has a finite sum, the contribution of the consump- 
tion stream, beyond a large enough horizon N, to the initial input-stock re- 

x~T+N At-(T+l)c(t) quirement is very small. In other words, for N large, z-~t=T+l 
is approximately equal to the initial stocks y(T + 1). If the consumption 
levels (from T + 1 to T + N) are very small, the current activity levels 
y(T 4- 1), and the labor used in period T, would be small. Consequently, 
there would be surplus labor in period T and this is clearly inconsistent 
with the premise that labor is scarce and its current wage is very high. 

3.2 Optimality of Competitive Programs: the Discounted Case 

In this section, we consider only the discounted case (0 < 6 < 1). A com- 
petitive program (x (t), y (t), c(t), p (t)) is said to satisfy the transversality 
condition if l i m t ~  p(t)y(t) = 0. It is well-known 5 that a competitive 
program which satisfies the transversality condition is optimal. We state 
this formally below, for ready reference. 6 

Theorem i: If (x(t), y(t),  c(t), p(t)) is a competitive program from any 
in R~ and 

lira p(t)y(t) = O, (6) 
t--+c~o 

then (x(t), y(t), e(t)) is an optimal program from Y. 

In the discounted case, we can show, using Proposition 1, that for every 
competitive program, the present value of output is asymptotically zero, 

5 While one can refer to treatments of this result in the more general "reduced- 
form" model by Weitzman (1973) and McKenzie (1986), it is most convenient to 
directly appeal to the analysis given in Dasgupta and Mitra (1990). 

6 It is interesting to note that the condition limt--+ ee p(t)y(t) = 0 of Theorem 1 can 
be replaced by the apparently weaker (but actually equivalent in this context) conditions 
given by liminft--+ec p(t)y(t) = 0 or limsupt~e c p(t)y(t) < ec. For a discussion 
of these alternative "transversality conditions," see the analysis in Dasgupta and Mitra 
(1994). 
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and so the program is necessarily optimal. This is the main result of this 
section. 

Theorem 2: If (x(t), y(t) ,  c(t), p( t ) )  is a competitive program from any 
in R~ then, (x(t),  y( t) ,  c(t)) is an optimal program from ~. 

We provide an intuitive argument below in which, whenever we refer to 
prices, cost, wage, these are understood to be present values; that is, they 
refer to valuations according to the price system p(t) ,  w(t) .  

As we observed earlier, according to the properties of equilibrium prices 
in a linear model, encapsulated in the profit conditions (3), in each period, 
feasible production processes at best break even (see Lemma 2). By As- 
sumption 3, there is a feasible (composite) process which allows some 
expansion possibility so that there is an output vector ~ which is possible 
to produce from inputs which amount to at most a fraction ~. of ~. 

Let us consider the behavior of the present value of this stock (p( t)~)  
over time. Since the process at best breaks even, the value of output ~ is at 
most the value of the produced inputs, valued at the previous-period prices, 
plus the wage. However, the produced inputs are a fraction )~ of f ,  so the 
value of ~ at time t is at most the wage plus a fraction )~ of its value in the 
previous period. Similarly, the value of ~ in (t - 1) is at most the wage 
in (t - 2) plus the cost of the produced inputs which are only a fraction 
)~ of ~. Consequently, the value of ~ at t decomposes into the direct wage 
cost w(t  - 1), a fraction )~ of the wage cost a period earlier, w(t  - 2), and 
a fraction )2 of the value of } at (t - 2). The pattern is clear: the value of 

at time t may be decomposed into a sum of current and past wages and 
the value of ~ at the initial period, each of these terms being weighted by 
weights which geometrically decline at the rate of )~, the further back in 
time being the value considered. 

It is now clear that if the time t is sufficiently far in the distant future, 
the effect of the value of ~ in the initial period, within the decomposition, 
becomes negligible. Similarly, the effect of the wage costs in the initial 
periods may also be neglected. We are, therefore, left with the effect of the 
wage terms in the final periods, close to the period t. 

Now recall that the current wage sequence is bounded (Proposition 1); 
therefore, the present value of wages (the current wages discounted at the 
rate of r) becomes negligible in the distant future. Consequently, for large 
values of t, the effect of the wage terms in the final periods, close to the 
period t, are also negligible, thereby leading us to the conclusion that the 
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present-value prices of the goods, Pt, become negligibly small as t becomes 
large. In other words, along a competitive path, the transversality condition 
is satisfied and, therefore, the path is optimal (by Theorem 1). 

3.3 Optimality of  Competitive Programs: the Undiscounted Case 

In this section we deal only with the undiscounted case (6 ---- 1). In order to 
establish the optimality of competitive programs, we will use, in addition 
to Assumptions 1-6, the following assumption. 

Assumption 7: u is strictly concave on R~_. 

The assumption that marginal utilities are decreasing (u is concave) is 
standard in the optimum-growth literature. We are making the assumption 
that u is concave, in particular, that it is strictly concave, to avoid technical 
complications. It is possible to get by with a weaker assumption which 
ensures a strict "value loss property" (including both the utility as well as 
production price support) at the golden-rule equilibrium (see Brock, 1970). 
We prefer to use the simplifying Assumption 7, as it is easy to check in 
applications. 

The standard result on price characterization of optimal programs in the 
undiscounted case says that if a program is competitive and the support- 
ing price path is bounded then the program is optimal. We first state this 
formally for ready reference. (Because none of the extant treatments in 
the literature directly apply to the model we are considering, even though 
their methods do apply with suitable modifications, we also provide a self- 
contained proof of this result in the appendix, for the convenience of the 
interested reader.) 

Theorem 3: If (x(t), y(t) ,  c(t), p(t))  is a competitive program from any 
in R~_ and 

limsup ][p(t)]l < ~ ,  (7) 
t ----> o o  

then (x(t), y(t) ,  c(t)) is an optimal program from ~.7 

7 The condition (7) can be replaced by the condition that lira suPt__+o c p(t)y(t) 
< e~. To see this, note that the latter condition can be used to show (using the same 
proof as in Theorem 3) that c(t) --+ c* as t --+ oc, and so y(t) -+ y* as t --+ oo 
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We now state the main result of  this section. 

Theorem 4: If  (x(t), y(t) ,  c(t), p(t)) is a competitive program from any 
in R~_, then (x(t), y(t), c(t)) is an optimal program from ~. 

The heuristic reasoning for this result is similar to that for Theorem 2. 8 
The difference is that, since ~ = 1, present and current values are the same 

so we need not distinguish between the two concepts. 
We may now follow the argument provided for Theorem 2 to conclude 

that the value of the stocks ~ at time t may be decomposed into a sum 
of current and past wages and the value of ~ at the initial period, each of 

these terms being weighted by weights which geometrically decline at the 

rate of  the fraction )~, the further back in time being the value considered. 
As before, if  the time t is large then the effect of the value of ~ in the 

initial period, within the decomposition, becomes negligible and we are 
left with only the sum of the weighted wage terms. By Proposition 1, the 

wage terms are bounded. Since the weights are geometrically declining, 
the contribution of the wages in the decomposition is bounded, leading us 

to the conclusion that the price sequence is bounded. Hence, by Theorem 3, 
the competitive program must be optimal. 

4 Conclusion 

Dynamic optimization models are now widely used in studying problems of 
macroeconomics, international trade, and public economics. In these mod- 

els, competitive paths satisfy the well-known Ramsey-Euler  equations. 

(by Lemma 1). Since the golden-rule equilibrium is a competitive program, c* >> 0 
and so y* >> 0 (by Lemma 3). Thus, (7) is then also satisfied. Conversely, given (7), 
the boundedness of output ensures that lim supt__+e e p(t)y(t) < oc. Thus, the two 
conditions are equivalent in this context and we can use them interchangeably. 

8 Note that our principal technical result (Proposition 1) uses Assumption 6, which 
is a significant, though plausible, restriction on the welfare function. Our results on 
the optimality of competitive programs (Theorems 2 and 4) use Proposition 1, and so 
Assumption 6. However, it appears to us that it might be possible to establish Theo- 
rem 2 (the optimality of competitive programs in the discounted case) without using 
Assumption 6, by following an alternative approach (see, e.g., Dasgupta and Mitra, 
1991). We are unsure, though, about making such a claim regarding Theorem 4 (the 
optimality of competitive programs in the undiscounted case). In any case, we feel that 
Proposition 1 is of sufficient independent interest to warrant the use of Assumption 6 
in this paper. 
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However, in order to demonstrate that a solution to these equations also 
solves the social planner's problem (or the representative agent's problem) 
one has to verify that the solution also satisfies an asymptotic transversality 
condition. This paper shows that in a class of interesting dynamic-optimi- 
zation models there is no need to check that this additional transversality 
condition holds. 

Appendix 

Proof of Lemma 1:9 Let T > 0 be given. For t > T, we have 

c(t) = y(t) - x(t) < y(t) - ay( t  + 1). (8) 

Thus, for N > 0, multiplying the inequality in (8), for each period t, by 
A t-T we get 

r + u  
S(N) -~ ~ At-T c(t) < y(T)  - AN+ty(T + N 4- 1). 

t=T 

Clearly, (S(N)) is a monotonic nondecreasing sequence in N, bounded 
above by y(T),  so it converges. Since A > 0 and y(t) > 0 for all t > 0, 
this establishes (la). 

If Ay (t 4- 1) -=- x (t) for t > 0, then the inequality in (8) is replaced by an 
equality for each t > 0. Since y(T 4- N 4- 1) is norm-bounded by fl while 
A u+l --+ 0 as N --+ cx~ by Remark 1, AN+Iy(T 4- N 4- 1) converges to 
the zero vector, and we obtain (lb). [] 

Proof of Lemma 3: Using the competitive condition (2) and Assump- 
tion 6.ii, we must have u(c(t)) > 0 for t > 0. So, using (2) again, and 
Assumption 6.iii, c(t) >> 0 for t _> 0. This implies that y(t) >> 0 for t > 0 
and also, by Assumption 6.i, that p(t) >> 0. This establishes part i of the 
lemma. Parts ii and iii now follow from Lemma 2. [] 

Proof of Proposition 1: Given )~ and ~ (see Assumption 3 and related 
comments), define a number 0 by 0 ~ [/}/mini{~i}], where/} is given by 
max(B, fl), and a positive integer, N, large enough so that 

4LN[o/(1 --~,)]b~ _< 1. (9) 

9 The proof of this result follows closely the line of argument used by Majumdar 
(1974). 



Infinite-Horizon Competitive Programs 231 

Next, choose a positive number M, large enough so that 

(4/M)[O/(1 - )0]by < 1. (10) 

Finally, denote (1/8) mJni{bi} by/z,  mini,j{ (1/6)aij ] aij > 0 } by de, and 
min{1, de} by oe. 

If (5) is violated, we can find a positive integer T, such that 

v(T) >_ (1/ix)(M/o~m). (11) 

By Lemma 3, p(t + 1) = p(t)A + w(t)b for t _> 0, which we can rewrite 

a s  

q(t + 1) = q(t)(1/3)A + v(t)(1/3)b for t > 0 .  (12) 

Denoting Ixv(T) by k, we get from (12) that 

q i ( T + l ) > _ k  for / - - -  1 . . . . .  n ,  (13) 

so that q (T  + 1) _> ke, where e = [1 . . . . .  I] in R n. Using (12) repeatedly, 
we will then obtain 

q( t+l)_>ot t -Tke  f o r t _ > T .  (14) 

Thus, using (11) we get 

q ( T + s ) > M e  f o r s =  1 . . . . .  N .  (15) 

Using the competitive condition (2), we have q (t) c (t) < u (c (t) ) for t > 0, 
so that (15) yields M]lc(t)H < q(t)c(t) < u(c(t)) < B for t = T + 1, 
. . . .  T + N, and 

qtc(t)II <_ [B/M] f o r t  ----- T + 1 . . . . .  T + N .  (16) 

By Lemma 3, we have x(t) = Ay(t + 1) for t > 0. Using Lemma 1, we 
obtain 

Z At-(T+l)c(t) = y(T + 1).  (17) 

t=T+l  

We proceed now to put bounds on the left-hand-side expression of (17) 
by using the bounds on consumption given by (16). We know that c(t) < 
fie < O# for all t > 0, so, in particular, At-(T+l)c(t) < OU-(T+I)~ for 
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t > T + N + l, and 

oo 

at- (T+l)c( t )  < ~.N[o/(1 -- )Q]~. (18) 

t = T + N + I  

Also, by using (16) we have for t = T + 1 . . . . .  T + N, c(t) < ( B / M ) e  
< (O/M)~, so that At-(T+l)c(t)  < (O/M)Lt-(T+I)f:,  and 

T + N  

At- (r+l)c( t )  <_ (1/M)[O/(1 - )~)1~.  (19) 
t = T + l  

Combining (17), (18), and (19), we get 

y (T  + 1) < ) ~ N [ o / ( I  - -  ~.)]y q- (1/M)[O/(1 - Z)]~. (20) 

Multiplying through by b, 

by(T  + 1) < ) t N [ O / ( l  - -  )~)]by --1- (1/M)[O/(1 - )Q]b~. (21) 

Using (9) and (10) in (21), by(T  + 1) _< (1/2) so that, by Lemma 2, w ( T )  
= 0 and v(T)  = 0, contradicting (11). [] 

Proof of Theorem 2: By Lemma 3, we have 

p ( t + l ) - - - p ( t ) A + w ( t ) b  f o r t > _ 0 .  (22) 

By Assumption 3, we are given )~ and ~ such that 0 < )~ < 1 and )~  >> A~. 
Multiplying (22) by ~, and noting that b~ _< 1, we get 

p(t  + 1)~ < )~p(t)~ § w(t)  . (23) 

Iterating on the inequality (23), 

t 

p(t  + 1)~ _< U+lp(O)~ + ~ _ U - S w ( s )  . (24) 
s=O 

Using Proposition 1, we can find 0 < M < oc, such that v(t) = [w( t ) /  
3t] < M for t > 0. Thus, (24) yields 

t 

p(t  + 1)~ < )J+lp(O)~: + Z Lt-S6SM. (25) 

s = 0  
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Denoting max{)~, 3} by p, we note that 0 < p < 1, and (25) yields 

p( t  + 1)~ < pt+lp(O)~ + m ( t  + 1)p t . (26) 

Since the right-hand-side of (26) converges to zero as t -+ oo, we obtain 
(6). Using Theorem 1, (x(t), y(t) ,  c(t)) is an optimal program from ~. [] 

Our proof of  Theorem 3 will require several steps. First, we will establish a 
familiar "golden-rule equilibrium" (Proposition 2). Second, we will estab- 

lish the asymptotic behavior of  programs which are "good" (Proposition 3). 

Third, we will check that "good" and "bad" programs do indeed exhaust 

the class of feasible programs (Proposition 4). Finally, we will establish 
that a competitive program with uniformly bounded prices is optimal.l~ 

A golden-rule equilibrium is a vector (x*, y*, c*, p*) in R4+ n such that 

= A  * 'c*  y* i. (x*, y*) E S2 with x* y , = - x*; 
ii. u(c*) - p 'c*  > u(c) - p* c for all c 6 R n '  - -  J r - ~  

iii. p ' y *  - p ' x *  > p*y - p*x for all (x, y) 6 ~2. 

Proposition 2." There exists a golden-rule equilibrium. 

Proof" Consider the following constrained-maximization problem: 

{maxu(z - Ay) subject to y - z  > 0, (z, y) 6 f2} = (MAX). 

Denoting (1/[mini {bi }]) by flo, we have ][y [[ < flo, and so the constraint 
set is compact. It is clearly nonempty. Using the continuity of  u, (MAX) 

has a solution, call it (z*, y*). Denoting (z* - Ay*) by c*, we note that if 
(z, Y) is any solution to (MAX), then ~ - Ay = c* by Assumption 7. Using 

Assumptions 3 and 6, we know that u(c*) > u@ - A~) > 0. Thus, we 
must have, using Assumption 6 again, y* = z* and y =- ~. Consequently, 

( l - a ) y *  = y * - a y *  = z * - A y *  = c* = ~ - A ~  = ~ - A ~  = ( I - A ) ~ .  

Since ( I  - A) -1 exists (see Remark 1), we must have y* = y and z* = ~. 
Thus, the solution to (MAX) is unique. Denoting Ay* by x*, we refer to 

(x*, y*, c*) as a golden rule. 

10 Our approach is to use the technique of Gale (1967). Specifically, the first two 
steps follow the analysis of Gale, modified suitably to apply to a model in which welfare 
is derived solely from consumption, as in Peleg (1974). In the third step, we cannot use 
any form of "strict convexity" of the technology set, given the linear model, unlike the 
treatments in Peleg (1974), Brock and Majumdar (1988), and others. The analysis here 
relies heavily on the specific structure of the technology set and is somewhat similar to 
that used in Mitra and Wan (1986) in their study of forest-management problems. 
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Using Assumption 3 to satisfy Slater's condition, we can apply the 
Kuhn-Tucker theorem to obtain p* in R~_ such that for all (z, y) in f2, 

u(z  - Ay )  + p* (y  - z) < u(c*) . (27) 

If we pick any y in R~_, satisfying by < 1, and define z = Ay + c*, then 
(z, y) 6 f2, and (27) yields p * ( y  - Ay  - c*) < O, so that p*y  - p * A y  < 

p ' y *  - p ' x * .  Thus if x is any vector in R~_ satisfying (x, y) E f2, then 
since x > Ay,  we have 

p*y  - p*x  < p ' y *  - p ' x * .  (28) 

Next, given any c in R~_, if we define y = y*, z = c + Ay*,  we have (z, y) 
~2, and applying (27), we get u(c)  + p* (y* - c - Ay*)  < u(c*),  so that 

u(c)  - p* c < u(c*) - p ' c *  . (29) 

Using (28) and (29), we can conclude that (x*, y*, c*, p*) is a golden-rule 
equilibrium. [] 

Using (29) and Assumption 7, we get 

u(c*) - p ' c *  > u ( c ) -  p*c for c in R~_, c 5~ c* . (30) 

Thus, if we define, for c in R~_, the function d(c,  c*) = [u(c*) - p 'c*] - 
[u(c) - p ' c ]  we note that d(c,  c*) > 0 when c r c*, and d(c,  c*) = 0 

w h e n  c = c*. 

Consider any e > 0 for which the set 

F ( e )  ~ {c in R~_ I l l c -  c*H > e, Ilcll 5/~} (31) 

is nonempty. Then, since F ( e )  is compact, and d(c,  c*) is continuous on 
F ( e ) ,  it attains a minimum at some g(e) in F(e ) .  Using (30), d(g(e), c*) 
> 0. Defining d ( e )  = d(g(e) ,  c*), 

d(c,  c*) > d (e )  > 0 for all c in F ( e )  . (32) 

Following Gale (1967), let us call a program (x( t ) ,  y ( t ) ,  c( t))  good if 
there is a real number G, such that for all T >_ 0, we have 

T 

Z [ u ( c ( t ) )  - u(c*)] >_ G .  (33) 
t=0 
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We call a program (x(t), y(t),  c(t)) bad if 

T 

~ [ u ( c ( t ) )  - u(c*)] --+ -cx~ as T --+ oc .  
t = 0  

235 

(34) 

Proposition 3: If (x(t), y(t),  c(t)) is a good program from ~, then 

lira c(t) = c*.  (35) 
l----~ Oo 

Proof" If (x(t), y(t), c(t)) is a good program from ~ in R~_, then using 
(28) and (29), and the definition of d, we can write 

T T 

}-~[u(c(t)) - u(c*) ]  _< p * ( 3  - y*)  + p*(x* - x ( r ) )  - ~ d ( c ( t ) ,  c*) .  
t = 0  t = 0  

(36) 

Combining (33) and (36), we have for T >_ 0, 

T 

S(T)  =- ~ d(c(t), c*) < p * f  + p ' x*  - G .  
t = 0  

(37) 

The sequence (S(T)) is monotonically nondecreasing and bounded above, 
so it converges. That is, Y ~ 0  d(c(t), c*) < ~ ,  so that d(c(t),  c*) --+ 0 
as t ~ ec. Using (32) it follows that (35) must hold. [] 

Proposition 4." If (x(t), y(t), c(t)) is a program from ~ which is not good, 
then it is bad. 

Proof." Given any real number L, we will show that there exists a positive 
integer H such that 

T 

~ [ u ( c ( t ) )  -- u(c*)] _< L 
t = 0  

for all T _> H .  (38) 

Denote 2flllp*[l by G1. Since (x(t), y(t),  c(t)) is not good, we can find H 
large enough so that 

H - 1  

~[u(c(t))- u(c*)] _< ( L -  G1). (39) 
t = 0  
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Using the conditions (28) and (29), we obtain for  N > 1, 

H + N  

2 [u(c(t))  - u(c*)] < p * ( y ( H )  - y*) + p*(x* - x ( H  + N) )  
t=H 

< p * ( y ( H )  + x * ) .  

(40) 

�9 Since Ily(H)II < ~ and Ijx*lJ <_ fi, we have y ( H )  < Be and x* < fie, so 
that p * ( y ( H )  + x*) < 2fl lip* II = 6 1 .  Thus, for all N > 1, using (39) and 

H + N  U C t (40), Y~-/=O [ ( ( ) )  - u(c*)] < L which establishes (38). [] 

Proof  o f  Theorem 3: Suppose, on the contrary, there is a program (xr(t),  
y1(t), c1(t)) f rom Y, a number  ~ > 0, and a sequence (Ts), such that for  
s =  1 , 2 , 3  . . . .  

Ts 
Z [ u ( c ' ( t ) )  -- u(c( t ) ) ]  > e . (41) 
t = 0  

For any T > 0, we have y~ft_o[U(C'(t)) - u(c(t))]  = y~ft=o[U(C'(t)) 

- u(c*)] + ~F=0[u(c*)  - u(c(t))] .  Using the competit ive conditions (2) 

and (3) for (x, y) = (x*, y*) and c = c* for t = 0 . . . . .  T,  y~f=0[u(c*) 
- u(c(t))]  <_ p(O)(y* - Y) + p ( T ) ( x ( T )  - x*) < p(O)y* § p ( T ) x ( T ) .  
By (7), there is a number  c~ such that [Ip(T)]l < ot for t > 0. Using this, 
we have p ( T ) x ( T )  <_ IIP(T)IIIIx(T)II <_ ot~, so that for  all T > 0, 

T 

Z [ u ( c * )  - u(c(t))]  < p(O)y* + otfl , (42) 
t = 0  

establishing that (x(t) ,  y ( t ) ,  c(t))  is good. Using (41) and (42), we can 

conclude that for the sequence (T~), we have y~f'_o[U(C'(t)) - u(c*)] > 
- p(O)y* - aft. This establishes, by using Proposition 4, that (x '( t) ,  

y1(t), cr(t)) is also good. 
Using Proposition 3, we then have 

lim c(t)  = c*; lira c~(t) = c* . (43) 
t - + ~  t--+ oG 

By Assumption 3, we are given )~ and ~ such that 0 < )~ < 1 and )@ >> A~. 
Define the number ~ by tl -- [e(1 - )Q/4otfl]. Using (43), we can find N 
sufficiently large such that for t > N, 

c* - @ < c(t)  < c* + @; c* - @ < c'(t)  < c* + rl~ . (44) 
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Pick s sufficiently large such that Ts > N; denote this Ts by T to ease the 

notation. Then, using the competitive conditions (2) and (3), 

T 

E [ u ( c ' ( t ) )  -- u(c(t))] < p ( T ) [ x ( T )  - x ' ( T ) ] .  
t=0 

(45) 

Using (41) and (45), we have p ( T ) [ x ( T )  - x ' (T) ]  > e. Thus p ( T ) [ y ( T )  

- y ' (T) ]  = p (T ) [x (T )  - x ' (T) ]  + p(T)[c (T)  - c ' (T)]  > e - 2 o p ( T ) ~  

> e - 2O~fl. By choice of ~, 2qc~/3 = ~(1 - A)/2, so that 

p ( T ) [ y ( T )  - y ' (T) ]  > @/2) + (eA/2) .  (46) 

Since (x(t), y(t) ,  c(t), p(t))  is competitive, by Lemma 3, Ay(t  + 1) 
e~ t -  T l = x( t )  for t > 0. Thus, Lemma 1 yields Y~t=r A c( ) = y(T) ,  and 

y~.~=r a t - r c ' ( t )  <_ y ' (T) .  Then, p ( T ) y ( T )  = p ( T ) [ ~ t ~ r  a t - rc ( t ) ] ;  
T e~ and p ( T ) y ' ( T )  >_ p(  )[Y~.t=r At-Vc' ( t )]  �9 Thus, using (44), p ( T ) ( y ( T )  

- y ' (T) )  < 2~lp(T) ~ : r  a t - r Y  < 2rlp(T)y/(1 - A) _< 2r/otfl/(1 - A) 

< (e/2) ,  which contradicts (46). [] 

Proof of  Theorem 4: By Lemma 3, we have p(t  + 1) = p ( t )A  + w(t)b 
for t > 0. Denoting p(t)~ by k(t),  and noting that A~ < A~, b~ < 1, we 

obtain 

k ( t + l ) < A k ( t ) + w ( t )  f o r t > 0 .  (47) 

Using Proposition 1, and noting that v(t) = w(t)  for t >_ 0 when ~ = 1, we 

can find a positive real number Q, suchthat0 < w(t) < Q for t  _> 0. Using 

this in (47), we obtain k(t + 1) < Ak(t) + Q for t > 0. Then, for t > 1, 
k(t) < Ark(0) + Q[1 + A-4-. . .  + At-l] .  Thus, k(t) < k(O) + Q/(1 - A) 

for t > 0. Since ~ >> 0, (7) must hold. The optimality of (x(t), y(t) ,  c(t)) 
now follows from Theorem 3. [] 
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